Objetivo: Aprender a hacer regresiones.
Empezar la apertura del fichero de resultados (practica6)
cd "c:\Users\Alumno\Desktop\Analisis\Datos"
use "PISA2012.dta", clear
set more off
summarize lectura-ciencias estatus edad
summarize lectura-ciencias estatus edad [weight=peso]
global p [weight=peso]
log using Practica6, replace
. regress mates $p
(analytic weights assumed)
(sum of wgt is 25312.9756941)
Source | SS df MS Number of obs = 25,313
-------------+---------------------------------- F(0, 25312) = 0.00
Model | 0 0 . Prob > F = .
Residual | 193003106 25,312 7624.96469 R-squared = 0.0000
-------------+---------------------------------- Adj R-squared = 0.0000
Total | 193003106 25,312 7624.96469 Root MSE = 87.321
------------------------------------------------------------------------------
mates | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | 484.6267 .5488417 883.00 0.000 483.551 485.7025
------------------------------------------------------------------------------
. regress mates edad $p
(analytic weights assumed)
(sum of wgt is 25312.9756941)
Source | SS df MS Number of obs = 25,313
-------------+---------------------------------- F(1, 25311) = 33.93
Model | 258410.612 1 258410.612 Prob > F = 0.0000
Residual | 192744696 25,311 7615.05653 R-squared = 0.0013
-------------+---------------------------------- Adj R-squared = 0.0013
Total | 193003106 25,312 7624.96469 Root MSE = 87.264
------------------------------------------------------------------------------
mates | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
edad | 11.03439 1.894217 5.83 0.000 7.321616 14.74717
_cons | 309.6336 30.04518 10.31 0.000 250.7433 368.5239
------------------------------------------------------------------------------
. regress mates estatus $p
(analytic weights assumed)
(sum of wgt is 25091.6302818)
Source | SS df MS Number of obs = 25,121
-------------+---------------------------------- F(1, 25119) = 4639.22
Model | 29415541 1 29415541 Prob > F = 0.0000
Residual | 159269938 25,119 6340.6162 R-squared = 0.1559
-------------+---------------------------------- Adj R-squared = 0.1559
Total | 188685479 25,120 7511.36462 Root MSE = 79.628
------------------------------------------------------------------------------
mates | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
estatus | 33.35637 .4897293 68.11 0.000 32.39647 34.31627
_cons | 492.0091 .5109143 963.00 0.000 491.0077 493.0105
------------------------------------------------------------------------------
. margins, at(estatus=(-3(1)+3))
Adjusted predictions Number of obs = 25,121
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : estatus = -3
2._at : estatus = -2
3._at : estatus = -1
4._at : estatus = 0
5._at : estatus = 1
6._at : estatus = 2
7._at : estatus = 3
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | 391.94 1.465118 267.51 0.000 389.0683 394.8117
2 | 425.2964 1.019014 417.36 0.000 423.299 427.2937
3 | 458.6527 .6402161 716.40 0.000 457.3979 459.9076
4 | 492.0091 .5109143 963.00 0.000 491.0077 493.0105
5 | 525.3655 .7693243 682.89 0.000 523.8575 526.8734
6 | 558.7218 1.184211 471.81 0.000 556.4007 561.043
7 | 592.0782 1.64089 360.83 0.000 588.862 595.2944
------------------------------------------------------------------------------
. marginsplot
Variables that uniquely identify margins: estatus
. regress mates edad estatus $p
(analytic weights assumed)
(sum of wgt is 25091.6302818)
Source | SS df MS Number of obs = 25,121
-------------+---------------------------------- F(2, 25118) = 2334.70
Model | 29577883.1 2 14788941.5 Prob > F = 0.0000
Residual | 159107596 25,118 6334.40545 R-squared = 0.1568
-------------+---------------------------------- Adj R-squared = 0.1567
Total | 188685479 25,120 7511.36462 Root MSE = 79.589
------------------------------------------------------------------------------
mates | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
edad | 8.780896 1.734507 5.06 0.000 5.38116 12.18063
estatus | 33.3163 .4895534 68.05 0.000 32.35675 34.27585
_cons | 352.7425 27.51435 12.82 0.000 298.8127 406.6722
------------------------------------------------------------------------------
. margins, at(estatus=(-3(1)+3))
Predictive margins Number of obs = 25,121
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : estatus = -3
2._at : estatus = -2
3._at : estatus = -1
4._at : estatus = 0
5._at : estatus = 1
6._at : estatus = 2
7._at : estatus = 3
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at |
1 | 392.0526 1.46457 267.69 0.000 389.1819 394.9232
2 | 425.3689 1.018616 417.60 0.000 423.3723 427.3654
3 | 458.6852 .6399346 716.77 0.000 457.4309 459.9395
4 | 492.0015 .5106662 963.45 0.000 491.0006 493.0024
5 | 525.3178 .769005 683.11 0.000 523.8105 526.8251
6 | 558.6341 1.183758 471.92 0.000 556.3139 560.9543
7 | 591.9504 1.640281 360.88 0.000 588.7353 595.1654
------------------------------------------------------------------------------
. regress mates edad estatus i.sexo $p
(analytic weights assumed)
(sum of wgt is 25091.6302818)
Source | SS df MS Number of obs = 25,121
-------------+---------------------------------- F(3, 25117) = 1653.54
Model | 31119370.7 3 10373123.6 Prob > F = 0.0000
Residual | 157566109 25,117 6273.28537 R-squared = 0.1649
-------------+---------------------------------- Adj R-squared = 0.1648
Total | 188685479 25,120 7511.36462 Root MSE = 79.204
------------------------------------------------------------------------------
mates | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
edad | 8.910174 1.726139 5.16 0.000 5.526841 12.29351
estatus | 33.23059 .4872165 68.20 0.000 32.27562 34.18557
2.sexo | 15.66931 .9996029 15.68 0.000 13.71003 17.62859
_cons | 342.7397 27.38872 12.51 0.000 289.0562 396.4232
------------------------------------------------------------------------------
. margins sexo, at(estatus=(-3(1)+3))
Predictive margins Number of obs = 25,121
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : estatus = -3
2._at : estatus = -2
3._at : estatus = -1
4._at : estatus = 0
5._at : estatus = 1
6._at : estatus = 2
7._at : estatus = 3
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_at#sexo |
1 1 | 384.3572 1.537942 249.92 0.000 381.3428 387.3717
1 2 | 400.0265 1.543706 259.13 0.000 397.0008 403.0523
2 1 | 417.5878 1.1287 369.97 0.000 415.3755 419.8001
2 2 | 433.2571 1.131722 382.83 0.000 431.0389 435.4754
3 1 | 450.8184 .8108143 556.01 0.000 449.2292 452.4076
3 2 | 466.4877 .8082829 577.13 0.000 464.9034 468.072
4 1 | 484.049 .7180784 674.09 0.000 482.6415 485.4565
4 2 | 499.7183 .7075358 706.28 0.000 498.3315 501.1051
5 1 | 517.2796 .921202 561.53 0.000 515.474 519.0852
5 2 | 532.9489 .9070019 587.59 0.000 531.1711 534.7267
6 1 | 550.5102 1.286992 427.75 0.000 547.9876 553.0328
6 2 | 566.1795 1.272579 444.91 0.000 563.6852 568.6738
7 1 | 583.7408 1.714306 340.51 0.000 580.3806 587.1009
7 2 | 599.4101 1.700301 352.53 0.000 596.0774 602.7428
------------------------------------------------------------------------------
. marginsplot
Variables that uniquely identify margins: estatus sexo
. regress mates edad estatus i.tipo $p
(analytic weights assumed)
(sum of wgt is 25091.6302818)
Source | SS df MS Number of obs = 25,121
-------------+---------------------------------- F(4, 25116) = 1268.75
Model | 31717434.1 4 7929358.54 Prob > F = 0.0000
Residual | 156968045 25,116 6249.72309 R-squared = 0.1681
-------------+---------------------------------- Adj R-squared = 0.1680
Total | 188685479 25,120 7511.36462 Root MSE = 79.055
------------------------------------------------------------------------------
mates | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
edad | 8.737364 1.7229 5.07 0.000 5.360379 12.11435
estatus | 30.66627 .5084744 60.31 0.000 29.66963 31.6629
|
tipo |
Concertado | 19.33684 1.213247 15.94 0.000 16.9588 21.71487
Privado | 23.08329 1.824699 12.65 0.000 19.50678 26.65981
|
_cons | 346.2176 27.33237 12.67 0.000 292.6445 399.7906
------------------------------------------------------------------------------
. margins tipo, at(estatus=(-3(1)+3))
Predictive margins Number of obs = 25,121
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : estatus = -3
2._at : estatus = -2
3._at : estatus = -1
4._at : estatus = 0
5._at : estatus = 1
6._at : estatus = 2
7._at : estatus = 3
-------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
_at#tipo |
1#Público | 392.7874 1.461863 268.69 0.000 389.9221 395.6528
1#Concertado | 412.1243 1.876526 219.62 0.000 408.4462 415.8024
1#Privado | 415.8707 2.436074 170.71 0.000 411.0959 420.6456
2#Público | 423.4537 1.021853 414.40 0.000 421.4508 425.4566
2#Concertado | 442.7905 1.475812 300.03 0.000 439.8978 445.6832
2#Privado | 446.537 2.092503 213.40 0.000 442.4356 450.6384
3#Público | 454.12 .6844096 663.52 0.000 452.7785 455.4614
3#Concertado | 473.4568 1.162662 407.22 0.000 471.1779 475.7357
3#Privado | 477.2032 1.827505 261.12 0.000 473.6212 480.7853
4#Público | 484.7862 .6401111 757.35 0.000 483.5316 486.0409
4#Concertado | 504.1231 1.021097 493.71 0.000 502.1216 506.1245
4#Privado | 507.8695 1.678711 302.54 0.000 504.5791 511.1599
5#Público | 515.4525 .9317512 553.21 0.000 513.6262 517.2788
5#Concertado | 534.7893 1.118297 478.22 0.000 532.5974 536.9812
5#Privado | 538.5358 1.677337 321.07 0.000 535.2481 541.8235
6#Público | 546.1187 1.357818 402.20 0.000 543.4573 548.7802
6#Concertado | 565.4556 1.405571 402.30 0.000 562.7006 568.2106
6#Privado | 569.202 1.823716 312.11 0.000 565.6275 572.7766
7#Público | 576.785 1.826547 315.78 0.000 573.2049 580.3652
7#Concertado | 596.1219 1.793812 332.32 0.000 592.6059 599.6378
7#Privado | 599.8683 2.086987 287.43 0.000 595.7777 603.9589
-------------------------------------------------------------------------------
. marginsplot
Variables that uniquely identify margins: estatus tipo
. regress mates edad c.estatus##i.tipo $p
(analytic weights assumed)
(sum of wgt is 25091.6302818)
Source | SS df MS Number of obs = 25,121
-------------+---------------------------------- F(6, 25114) = 849.41
Model | 31831111.3 6 5305185.22 Prob > F = 0.0000
Residual | 156854368 25,114 6245.69435 R-squared = 0.1687
-------------+---------------------------------- Adj R-squared = 0.1685
Total | 188685479 25,120 7511.36462 Root MSE = 79.03
--------------------------------------------------------------------------------
mates | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------------+----------------------------------------------------------------
edad | 8.738245 1.722603 5.07 0.000 5.361843 12.11465
estatus | 31.77387 .6148906 51.67 0.000 30.56865 32.97909
|
tipo |
Concertado | 19.00198 1.215395 15.63 0.000 16.61973 21.38422
Privado | 26.16467 2.01236 13.00 0.000 22.22033 30.10901
|
tipo#c.estatus |
Concertado | -2.059645 1.206315 -1.71 0.088 -4.424092 .3048023
Privado | -8.00395 1.935939 -4.13 0.000 -11.7985 -4.209396
|
_cons | 346.6318 27.3295 12.68 0.000 293.0644 400.1992
--------------------------------------------------------------------------------
. margins tipo, at(estatus=(-3(1)+3))
Predictive margins Number of obs = 25,121
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : estatus = -3
2._at : estatus = -2
3._at : estatus = -1
4._at : estatus = 0
5._at : estatus = 1
6._at : estatus = 2
7._at : estatus = 3
-------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
_at#tipo |
1#Público | 389.8928 1.718523 226.88 0.000 386.5244 393.2612
1#Concertado | 415.0737 3.372838 123.06 0.000 408.4628 421.6847
1#Privado | 440.0693 6.65171 66.16 0.000 427.0316 453.1071
2#Público | 421.6667 1.164111 362.22 0.000 419.385 423.9484
2#Concertado | 444.7879 2.404186 185.01 0.000 440.0756 449.5003
2#Privado | 463.8392 4.895276 94.75 0.000 454.2442 473.4343
3#Público | 453.4405 .7163574 632.98 0.000 452.0364 454.8446
3#Concertado | 474.5022 1.529068 310.32 0.000 471.5051 477.4992
3#Privado | 487.6092 3.228421 151.04 0.000 481.2813 493.9371
4#Público | 485.2144 .6537302 742.22 0.000 483.9331 486.4958
4#Concertado | 504.2164 1.024624 492.10 0.000 502.2081 506.2247
4#Privado | 511.3791 1.903202 268.69 0.000 507.6487 515.1095
5#Público | 516.9883 1.04773 493.44 0.000 514.9347 519.0419
5#Concertado | 533.9306 1.384025 385.78 0.000 531.2178 536.6434
5#Privado | 535.149 1.887365 283.54 0.000 531.4497 538.8484
6#Público | 548.7622 1.588803 345.39 0.000 545.648 551.8763
6#Concertado | 563.6448 2.2215 253.72 0.000 559.2906 567.9991
6#Privado | 558.9189 3.200408 174.64 0.000 552.6459 565.1919
7#Público | 580.536 2.16957 267.58 0.000 576.2835 584.7885
7#Concertado | 593.3591 3.179381 186.63 0.000 587.1273 599.5908
7#Privado | 582.6888 4.864522 119.78 0.000 573.1541 592.2236
-------------------------------------------------------------------------------
. marginsplot
Variables that uniquely identify margins: estatus tipo
. log close
. save pisa2012r.dta, replace
file pisa2012r.dta saved
. exit