Objetivo: Elaboración de análisis factorial.
. cd "c:\Users\vdi\Downloads"
. use "00000000X.dta", clear
. ssc install factortest
. global variables p1201-p1207
. global partidos PSOE PP CS Podemos IU VOX PACMA
. rename ($variables) ($partidos)
. recode $partidos (11/max=.)
(PSOE: 1286 changes made)
(PP: 1313 changes made)
(CS: 1375 changes made)
(Podemos: 1292 changes made)
(IU: 1449 changes made)
(VOX: 1383 changes made)
(PACMA: 3018 changes made)
. log using practica4
------------------------------------------------------------------------------------------------------
name:
log: c:\Users\vdi\Downloads\practica4.smcl
log type: smcl
opened on: 7 Nov 2020, 18:23:01
. count
17,650
. summarize $partidos
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
PSOE | 16,364 3.667074 3.780979 0 10
PP | 16,337 2.34376 3.291869 0 10
CS | 16,275 1.91828 2.763632 0 10
Podemos | 16,358 1.827668 2.829132 0 10
IU | 16,201 1.627739 2.656042 0 10
-------------+---------------------------------------------------------
VOX | 16,267 1.108195 2.501439 0 10
PACMA | 14,632 .9685621 2.104987 0 10
. corr $partidos
(obs=14,253)
| PSOE PP CS Podemos IU VOX PACMA
-------------+---------------------------------------------------------------
PSOE | 1.0000
PP | -0.2430 1.0000
CS | -0.0983 0.4875 1.0000
Podemos | 0.1457 -0.2194 -0.1012 1.0000
IU | 0.1779 -0.1998 -0.0922 0.7816 1.0000
VOX | -0.2247 0.3298 0.2898 -0.1433 -0.1203 1.0000
PACMA | 0.0839 -0.0423 0.0821 0.3740 0.4132 0.0188 1.0000
. factortest $partidos
Determinant of the correlation matrix
Det = 0.176
Bartlett test of sphericity
Chi-square = 24744.659
Degrees of freedom = 21
p-value = 0.000
H0: variables are not intercorrelated
Kaiser-Meyer-Olkin Measure of Sampling Adequacy
KMO = 0.647
. pca $partidos, mineigen(1)
Principal components/correlation Number of obs = 14,253
Number of comp. = 2
Trace = 7
Rotation: (unrotated = principal) Rho = 0.5715
--------------------------------------------------------------------------
Component | Eigenvalue Difference Proportion Cumulative
-------------+------------------------------------------------------------
Comp1 | 2.37581 .751385 0.3394 0.3394
Comp2 | 1.62442 .708706 0.2321 0.5715
Comp3 | .915719 .197961 0.1308 0.7023
Comp4 | .717758 .0480738 0.1025 0.8048
Comp5 | .669684 .188571 0.0957 0.9005
Comp6 | .481113 .265621 0.0687 0.9692
Comp7 | .215492 . 0.0308 1.0000
--------------------------------------------------------------------------
Principal components (eigenvectors)
------------------------------------------------
Variable | Comp1 Comp2 | Unexplained
-------------+--------------------+-------------
PSOE | 0.2732 -0.1665 | .7777
PP | -0.3791 0.4261 | .3636
CS | -0.2688 0.5017 | .4195
Podemos | 0.5160 0.3040 | .2174
IU | 0.5179 0.3277 | .1882
VOX | -0.2870 0.3977 | .5474
PACMA | 0.3042 0.4256 | .486
------------------------------------------------
. rotate
Principal components/correlation Number of obs = 14,253
Number of comp. = 2
Trace = 7
Rotation: orthogonal varimax (Kaiser off) Rho = 0.5715
--------------------------------------------------------------------------
Component | Variance Difference Proportion Cumulative
-------------+------------------------------------------------------------
Comp1 | 2.12171 .243191 0.3031 0.3031
Comp2 | 1.87852 . 0.2684 0.5715
--------------------------------------------------------------------------
Rotated components
------------------------------------------------
Variable | Comp1 Comp2 | Unexplained
-------------+--------------------+-------------
PSOE | 0.1254 -0.2943 | .7777
PP | -0.0606 0.5671 | .3636
CS | 0.0731 0.5645 | .4195
Podemos | 0.5965 -0.0528 | .2174
IU | 0.6119 -0.0346 | .1882
VOX | -0.0022 0.4904 | .5474
PACMA | 0.4949 0.1693 | .486
------------------------------------------------
Component rotation matrix
----------------------------------
| Comp1 Comp2
-------------+--------------------
Comp1 | 0.8135 -0.5815
Comp2 | 0.5815 0.8135
----------------------------------
. screeplot, name(scpc, replace)
. loadingplot, name(lopc, replace)
1. Una vez que se ha realizado el análisis de componentes principales (y opcionalmente se ha rotado), pueden obtenerse las puntuaciones factoriales con la orden predict. A esta orden conviene darle un nombre acompañado de un asterisco, que indica los distintos componentes obtenidos.
. predict cp1 cp2
(score assumed)
Scoring coefficients for orthogonal varimax rotation
sum of squares(column-loading) = 1
----------------------------------
Variable | Comp1 Comp2
-------------+--------------------
PSOE | 0.1254 -0.2943
PP | -0.0606 0.5671
CS | 0.0731 0.5645
Podemos | 0.5965 -0.0528
IU | 0.6119 -0.0346
VOX | -0.0022 0.4904
PACMA | 0.4949 0.1693
----------------------------------
2. Los coeficientes de puntuación no son útiles en la interpretación, pero son el medio para obtener las puntuaciones factoriales (una por cada factor y por cada individuo) a las que se pueden aplicar los análisis que se deseen posteriormente.
. summarize cp*
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
cp1 | 14,253 -1.46e-09 1.45661 -1.289414 6.050079
cp2 | 14,253 2.93e-09 1.370592 -1.79841 5.721392
2. Subir el fichero practica4.smcl a Studium en la práctica de análisis factorial.